
Technische Universität München
Institut für Informatik

D-85748 Garching, Germany

Towards a Theory of Architectural Contracts:

Schemes and Patterns

of

Assumption/Promise Based System Specification

Manfred Broy

Manfred Broy 2Contracts, Marktoberdorf Summer School, August 2010

Topics

• Discrete Systems

• Discrete System modelling theory
◊ Discrete System

• Interface

• Logical specification

◊ Architectures
• Composition

• Compositional reasoning

• Contracts
◊ Assumption/Promise

◊ Logical interpretation

◊ Safety and Liveness

• Architectures
◊ Design by assumption/promise

• Generalizations

Technische Universität München
Institut für Informatik

D-85748 Garching, Germany

Part I
System Modelling

Motivation & Foundations

Manfred Broy 4Contracts, Marktoberdorf Summer School, August 2010

What is a (discrete) system?

A system

• has a scope (a boundary)

• a behaviour
◊ black box view: interface

• syntactic interface: defines the discrete events at the system boundary by
input and output via ports, channels, messages (events, signals)

• dynamic interface, interface behaviour: the processes of interaction in terms
of discrete events at the system boundary

◊ glass/white box view: an internal structure (state and/or distribution into
sub-systems)

• architecture in terms of sets of sub-systems and their relationships
(communication connections)

• state space

and a behaviour
• state transition relation with input and output

• interactions between components

• properties
◊ quality profile (performance, ...)

◊ ...

Manfred Broy 5Contracts, Marktoberdorf Summer School, August 2010

The role of modelling in software & systems engineering (S&SE)

Software & systems engineering means

• capturing requirements

◊ domain specific

◊ functional, logical, technical, methodological

• specification of the system’s overall functionality

• design of a solution in terms of

◊ architecture

◊ specifying components

• implementing components

• verifying components and

• integrating them into systems and verifying the integration

• verification of system

• further evolution

These are complex error prone tasks!

Manfred Broy 6Contracts, Marktoberdorf Summer School, August 2010

The role of modelling in software & systems engineering

Modelling helps for:

• expressing and documenting the requirements

• specifying the system

• describing the architecture

◊ specifying the components

◊ their composition and interaction

• modelling the components

• verifying of the components and

• integrating them into the system and verifying the system

Manfred Broy 7Contracts, Marktoberdorf Summer School, August 2010

On models and modelling

What is a model?
◊ An abstraction!

Which representations for models?
◊ Informal: language, informal diagrams, ...

◊ Semiformal: formalized graphical or textual presentation languages

◊ Mathematical: in terms of mathematical theories

◊ Formal models: formalized syntax, semantics and logics

What do we use models for?
◊ for understanding - Gedankenmodell

◊ for communication

◊ for specification, design and documentation

◊ for analysis, validation, simulation, verification, certification

◊ for generation of implementations and tests

◊ for reuse

Modelling concepts provide methods for modelling!

Manfred Broy 8Contracts, Marktoberdorf Summer School, August 2010

R
System delivery

System verification

R S

Specification, verification, architecture ...
Informal

requirements

S

Formalized
system requirements

in terms of
service taxonomies

Requirements
Engineering

Validation

S1
S2

S4 S3

Architecture design

Architecture verification

S S1 S2 S3 S4
R1

R2

R4 R3

Component
implementation

verification

R1 S1

R2 S2

R3 S3

R4 S4

R1
R2

R4 R3

Integration

R = R1 R2 R3 R4

S

S1 S2 S3 S4S2

Manfred Broy 9Contracts, Marktoberdorf Summer School, August 2010

System class: distributed, reactive systems

Towards a uniform model: Basic system model

lc

clLM Control RM

cr

rc

kc
component

channel

System consists of

• named components (with local state)

• named channels

driven by a global, discrete clock

channel
name

component
name

Manfred Broy 10Contracts, Marktoberdorf Summer School, August 2010

Basic system model

E

eq

qe
Q

t t+1 t+2 t+3

a -

Timed Streams: Semantic Model for Black-Box-Behavior

Messages
transmitted at time t

infinite channel
history

Message set:

M = {a, b, c, ...}

Manfred Broy 11Contracts, Marktoberdorf Summer School, August 2010

The Basic Behaviour Model: Timed Streams and Channels

Manfred Broy 12Contracts, Marktoberdorf Summer School, August 2010

System interface model

x1: S1
xn: Sn

y1: T1

ym: Tm

F

Channel: Identifier of Type stream

 I = { x1 , x2 , ... } set of typed input channels
O = { y1 , y2 , ... } set of typed output channels

Syntactic interface: (I  O)

Interface behavior

Set of interface behaviours with input channels I
and output channels O:

IF[I  O]

Set of all interface behaviours: IF

F : I (
r
O)

Manfred Broy 13Contracts, Marktoberdorf Summer School, August 2010

I O

Component interface

System interface behaviour - causality

 (I  O) syntactic interface with set of input channels I and
of output channels O

 F : I (
r
O) semantic interface for (I  O) with timing property

addressing strong causality

 let x, z
r
I , y

r
O , t IN:

x t = z t {y t+1: y F(x)} = {y t+1: y F(z)}

A system shows a total behavior

Manfred Broy 14Contracts, Marktoberdorf Summer School, August 2010

Example: Component interface specification

TMC

x ~ y

x:T y:T

Input channel

Output channel

Specifying assertion

Spec name

Manfred Broy 15Contracts, Marktoberdorf Summer School, August 2010

Verification: Proving properties about specified components

From the interface assertions we can prove

• Safety properties

{m}#y > 0 y TMC(x) {m}#x > 0

• Liveness properties

{m}#x > 0 y TMC(x) {m}#y > 0

Manfred Broy 16Contracts, Marktoberdorf Summer School, August 2010

System model: conclusion

A system

• has a scope (a boundary)

• a behaviour
◊ black box view: interface

• syntactic interface: defines the discrete events at the system boundary by
input and output via ports, channels, messages (events, signals)

• dynamic interface, interface behaviour: the processes of interaction in terms
of discrete events at the system boundary

◊ glass/white box view: an internal structure (state and/or distribution into
sub-systems)

• architecture in terms of sets of sub-systems and their relationships
(communication connections)

• state space

and a behaviour
• state transition relation with input and output

• interactions between components

• properties
◊ quality profile (performance, ...)

◊ ...

Technische Universität München
Institut für Informatik

D-85748 Garching, Germany

Systems as State Machines

Manfred Broy 18Contracts, Marktoberdorf Summer School, August 2010

System and States

• Systems have states

• A state is an element of a state space

• We characterize state spaces by

◊ a set of state attributes together with their types

• The behaviour of a system with states can be described
by its state transitions

Manfred Broy 19Contracts, Marktoberdorf Summer School, August 2010

Example: Memory Cell as State Machine with Input/Output

Graphically (interpreted): state attribute s : Int | {null}

empty

s = null

full

s ≠ null

write(n) / ackwrite {s := n} read / out(s)

delete / ackdel {s := null}

Manfred Broy 20Contracts, Marktoberdorf Summer School, August 2010

Representation of the State Machine as a Table

Manfred Broy 21Contracts, Marktoberdorf Summer School, August 2010

Representation as a Mathematical State Machine

State space: = Z {null}

Input set: E = {read, delete} {write(z): z Z }

Output set: A = {ackwrite, ackdel} {out(z): z Z}

Equations for the state transition function:

:

(null, write(z)) = (z, ackwrite)

(z, read) = (z, out(z))

(z, delete) = (null, ackdel)

Manfred Broy 22Contracts, Marktoberdorf Summer School, August 2010

State Machines in general

A state machine consists of

• a set of states - the state space

• a set of initial states

• a state transition function or relation

◊ in case of a state machine with input/output:

events (inputs E) trigger the transitions and events (outputs A)
are produced by them respectively:

in the case of nondeterministic machines:

• Given a syntactic interface with sets I and O of input and output
channels:

E = I M {-}

A = O M {-}

Manfred Broy 23Contracts, Marktoberdorf Summer School, August 2010

Computations of a State Machine with Input/Output

A state machine (,) defines for each initial state

0

and each sequence of inputs

e1, e2, e3, ... E

a sequence of states

1, 2, 3, ...

and a sequence of outputs

a1, a2, a3, ... A

through

(i+1, ai+1) (i, ei+1)

Manfred Broy 24Contracts, Marktoberdorf Summer School, August 2010

Computations of a State Machine with Input/Output

In this manner we obtain computations of the form

For each initial state 0 we define a function

with

F 0(x) = {y: i: 0 = 0 i IN: (i+1, xi+1) = (i, yi+1)}

F 0 : interface behavior of transition function for initial state 0.

We define

Abs((,)) = F

where:

F (x) = {y F (x) : y F (x) }

F is called the interface behavior of the state machine (,) .

 0
a1 / b1

1
a2 / b2

2
a3 / b3

3 ...

 F 0 :
r
I (

r
O)

Manfred Broy 25Contracts, Marktoberdorf Summer School, August 2010

Moore Machines

• A Mealy machine with

is called Moore machine if for all states and inputs e E the
set

out(, e) = {a A: (, a) = (, e) }

does not depend on the input e but only on state .

• Formally: then for all e, e’ E we have

out(, e) = out(, e’)

Theorem:

If is a Mealy machine then F is causal.

If is a Moore machine then F is strongly causal.

Manfred Broy 26Contracts, Marktoberdorf Summer School, August 2010

Interface Abstraction

• For a given state machine with input and output we define the
interface through

◊ its syntactical interface (signature)

◊ its interface behavior

• We call the transition of the state machine to its interface the
interface abstraction.

Verification/derivation of interface assertions for state machines

• similar to program verification (find an invariant)

• needs sophisticated techniques

Manfred Broy 27Contracts, Marktoberdorf Summer School, August 2010

Conclusion Systems as State Machines

• Each state machines defines an interface behaviour

• Each interface behaviour represents a state machine

• State machines can be described

◊ mathematically by their state transition function

◊ graphically by state machine diagrams

◊ structured by state transition tables

◊ by programs

• State machines define a kind of operational semantics

• Systems given by state machines can be simulated

• From state machines we can generate code

◊ state machines can represent implementations

• From state machines we can generate test cases

Manfred Broy 28Contracts, Marktoberdorf Summer School, August 2010

System model: conclusion

A system

• has a scope (a boundary)

• a behaviour
◊ black box view: interface

• syntactic interface: defines the discrete events at the system boundary by
input and output via ports, channels, messages (events, signals)

• dynamic interface, interface behaviour: the processes of interaction in terms
of discrete events at the system boundary

◊ glass/white box view: an internal structure (state and/or distribution into
sub-systems)

• architecture in terms of sets of sub-systems and their relationships
(communication connections)

• state space

and a behaviour
• state transition relation with input and output

• interactions between components

• properties
◊ quality profile (performance, ...)

◊ ...

