Towards a Theory of Architectural Contracts: Schemes and Patterns of Assumption/Promise Based System Specification

Manfred Broy

Technische Universität München Institut für Informatik D-85748 Garching, Germany

Topics

- Discrete Systems
- Discrete System modelling theory
 - ♦ Discrete System
 - Interface
 - Logical specification
 - Architectures
 - Composition
 - Compositional reasoning
- Contracts
 - Assumption/Promise
 - Logical interpretation
 - Safety and Liveness
- Architectures
 - Design by assumption/promise
- Generalizations

Part I System Modelling

Motivation & Foundations

Technische Universität München Institut für Informatik D-85748 Garching, Germany

A system

- has a scope (a boundary)
- a behaviour
 - black box view: interface
 - syntactic interface: defines the discrete events at the system boundary by input and output via ports, channels, messages (events, signals)
 - dynamic interface, interface behaviour: the processes of interaction in terms of discrete events at the system boundary
 - glass/white box view: an internal structure (state and/or distribution into sub-systems)
 - architecture in terms of sets of sub-systems and their relationships (communication connections)
 - state space
 - and a behaviour
 - state transition relation with input and output
 - interactions between components
- properties
 - ♦ quality profile (performance, ...)

```
◇ ...
```

The role of modelling in software & systems engineering (S&SE)

Software & systems engineering means

- capturing requirements
 - ♦ domain specific
 - functional, logical, technical, methodological
- specification of the system's overall functionality
- design of a solution in terms of
 - architecture
 - specifying components
- implementing components
- verifying components and
- integrating them into systems and verifying the integration
- verification of system
- further evolution

These are complex error prone tasks!

Modelling helps for:

- expressing and documenting the requirements
- specifying the system
- describing the architecture
 - specifying the components
 - their composition and interaction
- modelling the components
- verifying of the components and
- integrating them into the system and verifying the system

On models and modelling

What is a model?

An abstraction!

Which representations for models?

- ♦ Informal: language, informal diagrams, ...
- Semiformal: formalized graphical or textual presentation languages
- Mathematical: in terms of mathematical theories
- Formal models: formalized syntax, semantics and logics

What do we use models for?

- for understanding Gedankenmodell
- for communication
- for specification, design and documentation
- for analysis, validation, simulation, verification, certification
- for generation of implementations and tests
- for reuse

Modelling concepts provide methods for modelling!

Manfred Broy Contracts, Marktoberdorf Summer School, August 2010

Towards a uniform model: Basic system model

Basic system model

Timed Streams: Semantic Model for Black-Box-Behavior

C set of channels

Type: $C \rightarrow TYPE$ type assignment

 $x : C \rightarrow (\mathbb{N}_{0}) \rightarrow \mathbb{M} \cup \{-\})$ channel history for messages of type M

C or IH[C]set of channel histories for channels in C

ШП

Channel: Identifier of Type stream

 $I = \{ x_1, x_2, \dots \}$ set of typed input channels $O = \{ y_1, y_2, \dots \}$ set of typed output channels

Syntactic interface:

Interface behavior

$$\mathsf{F}: \vec{\mathrm{I}} \to \wp(\mathbf{O})$$

ШТ

Set of interface behaviours with input channels I and output channels O:

IF[I ► O]

Set of all interface behaviours: IF

(I ► O) syntactic interface with set of input channels I and of output channels O

 $F: \vec{I} \rightarrow \mathcal{O}(\vec{O})$ semantic interface for $(I \triangleright O)$ with timing property addressing strong causality

let x, $z \in I$, $y \in O$, $t \in N$:

 $x \downarrow t = z \downarrow t \Longrightarrow \{y \downarrow t+1 \colon y \in F(x)\} = \{y \downarrow t+1 \colon y \in F(z)\}$

A system shows a total behavior

Ш

ПЛ

Verification: Proving properties about specified components

From the interface assertions we can prove

Safety properties

 $\{m\} \# y > 0 \land y \in TMC(x) \Rightarrow \{m\} \# x > 0$

• Liveness properties

 $\{m\}\#x > 0 \land y \in TMC(x) \Longrightarrow \{m\}\#y > 0$

ТШП

System model: conclusion

A system

- has a scope (a boundary)
- a behaviour
 - black box view: interface
 - syntactic interface: defines the discrete events at the system boundary by input and output via ports, channels, messages (events, signals)
 - dynamic interface, interface behaviour: the processes of interaction in terms of discrete events at the system boundary
 - glass/white box view: an internal structure (state and/or distribution into sub-systems)
 - architecture in terms of sets of sub-systems and their relationships (communication connections)
 - state space
 - and a behaviour
 - state transition relation with input and output
 - interactions between components
- properties
 - ♦ quality profile (performance, ...)
 - ۰...

Ш

Systems as State Machines

Technische Universität München Institut für Informatik D-85748 Garching, Germany

- Systems have states
- A state is an element of a state space
- We characterize state spaces by

♦ a set of state attributes together with their types

• The behaviour of a system with states can be described by its state transitions

Example: Memory Cell as State Machine with Input/Output

Graphically (interpreted): state attribute s : Int | {null}

ТШ

State s	Input	State s	Output
null	write(n)	n	ackwrite
n	read	n	out(n)
n	delete	null	ackdel

ТШ

Representation as a Mathematical State Machine

State space:	$\odot = Z * \{null\}$
Input set:	$E = \{read, delete\} * \{write(z): z \Box Z \}$
Output set:	A = {ackwrite, ackdel} $*$ {out(z): z \square Z}

Equations for the state transition function:

 $\otimes: \mathbb{O} \times \oplus \square \otimes \times \mathfrak{I}$

⊗(null, write(z))	= (z, ackwrite)
⊗(z, read)	= (z, out(z))
⊗(z, delete)	= (null, ackdel)

21

ТΠ

State Machines in general

A state machine $(\otimes, \not\subset)$ consists of

- a set © of states the state space
- a set $\not\subset \Box \odot$ of initial states
- a state transition function or relation \otimes
 - in case of a state machine with input/output: events (inputs E) trigger the transitions and events (outputs A) are produced by them respectively:

 $\otimes: \mathbb{O} \times \oplus \square \otimes \times \mathfrak{I}$

in the case of nondeterministic machines:

 $\otimes: \mathbb{O} \times \oplus \square \ \wp(\mathbb{O} \times \mathfrak{I})$

 Given a syntactic interface with sets I and O of input and output channels:

 $E = I \Box M \cup \{-\}$ $A = O \Box M \cup \{-\}$

ШТ

Computations of a State Machine with Input/Output

A state machine (\otimes , \triangleleft) defines for each initial state $\int_{\Omega} \Box \triangleleft$

and each sequence of inputs

 $e_1, e_2, e_3, ... \Box E$

a sequence of states

$$\int_{1'}$$
 $\int_{2'}$ $\int_{3'}$... $\Box \odot$

and a sequence of outputs

a₁, a₂, a₃, ... □ A

through

```
(\int_{i+1}, a_{i+1}) \square \otimes (\int_{i}, e_{i+1}))
```

Ш

Computations of a State Machine with Input/Output

In this manner we obtain computations of the form

$$\sigma_0 \xrightarrow{a_1/b_1} \sigma_1 \xrightarrow{a_2/b_2} \sigma_2 \xrightarrow{a_3/b_3} \sigma_3 \dots$$

For each initial state $\int \mathbf{O} \Box \Sigma$ we define a function

$$F_{\sigma 0} : I \to \mathcal{O}(O)$$

with

 $\begin{array}{l} \mathsf{F}_{(0)}(\mathsf{x}) = \{\mathsf{y}: \exists \ f_i: \ f 0 = \ f_0 \land \forall \ i \Box \ \mathrm{IN}: \ (f_{i+1}, \mathsf{x}_{i+1}) = \otimes (f_i, \mathsf{y}_{i+1}) \} \\ \mathsf{F}_{(0)}: \ \text{interface behavior of transition function } \Delta \ \text{for initial state} \ f 0. \\ \text{We define} \end{array}$

 $Abs((\otimes, \not \subset)) = F_{\Lambda}$

where:

$$\mathsf{F}_{\Lambda}(\mathsf{x}) = \{ \mathsf{y} \Box \mathsf{F}_{\mathsf{f}}(\mathsf{x}) : \mathsf{y} \Box \mathsf{F}_{\mathsf{f}}(\mathsf{x}) \land \mathsf{f} \Box \not\subset \}$$

 F_{Λ} is called the interface behavior of the state machine (\otimes , $\not\subset$).

• A Mealy machine $(\otimes, \not\subset)$ with

 $\otimes: \mathbb{O} \times \oplus \square \wp(\mathbb{O} \times \mathfrak{I})$

is called Moore machine if for all states $\int \Box \odot$ and inputs $e \Box E$ the set

out($(, e) = \{a \Box A: ((, a) = \otimes((, e))\}$

does not depend on the input e but only on state f.

Formally: then for all e, e' □ E we have
out(ſ, e) = out(ſ, e')

Theorem: If $(\otimes, \not\subset)$ is a Mealy machine then $F_{\not\subset}$ is causal. If $(\otimes, \not\subset)$ is a Moore machine then $F_{\not\subset}$ is strongly causal.

- For a given state machine with input and output we define the interface through
 - its syntactical interface (signature)
 - ♦ its interface behavior
- We call the transition of the state machine to its interface the interface abstraction.

Verification/derivation of interface assertions for state machines

- similar to program verification (find an invariant)
- needs sophisticated techniques

Conclusion Systems as State Machines

- Each state machines defines an interface behaviour
- Each interface behaviour represents a state machine
- State machines can be described
 - Mathematically by their state transition function
 - or graphically by state machine diagrams
 - structured by state transition tables
 - by programs
- State machines define a kind of operational semantics
- Systems given by state machines can be simulated
- From state machines we can generate code
 - state machines can represent implementations
- From state machines we can generate test cases

A system

- has a scope (a boundary)
- a behaviour
 - black box view: interface
 - syntactic interface: defines the discrete events at the system boundary by input and output via ports, channels, messages (events, signals)
 - dynamic interface, interface behaviour: the processes of interaction in terms of discrete events at the system boundary
 - glass/white box view: an internal structure (state and/or distribution into sub-systems)
 - architecture in terms of sets of sub-systems and their relationships (communication connections)
 - state space
 - and a behaviour
 - state transition relation with input and output
 - interactions between components
- properties
 - ♦ quality profile (performance, ...)
 - ۰...

ШТ