Towards a Theory of Architectural Contracts:
Schemes and Patterns
of
Assumption/Promise Based System Specification

Manfred Broy

Technische Universitat Miinchen el Tl
Institut fur Informatik g % Zﬁ i |
D-85748 Garching, Germany -

Topics

* Discrete Systems

* Discrete System modelling theory

¢ Discrete System
o Interface
e Logical specification
¢ Architectures
e Composition
e Compositional reasoning
* Contracts
¢ Assumption/Promise
¢ Logical interpretation
¢ Safety and Liveness

* Architectures
¢ Design by assumption/promise
* Generalizations

Contracts, Marktoberdorf Summer School, August 2010 Manfred Broy

Part 1
System Modelling

Motivation & Foundations

Technische Universitat Miinchen
Institut fur Informatik
D-85748 Garching, Germany

What is a (discrete) system?

A system
* has a scope (a boundary)

* a behaviour

¢ black box view: interface

e syntactic interface: defines the discrete events at the system boundary by
input and output via ports, channels, messages (events, signals)

e dynamic interface, interface behaviour: the processes of interaction in terms
of discrete events at the system boundary

¢ glass/white box view: an internal structure (state and/or distribution into
sub-systems)

e architecture in terms of sets of sub-systems and their relationships
(communication connections)

e state space
and a behaviour
o state transition relation with input and output
e interactions between components
* properties
¢ quality profile (performance, ...)
o ..

Contracts, Marktoberdorf Summer School, August 2010 Manfred Broy Tum | 4

The role of modelling in software & systems engineering (S&SE)

Software & systems engineering means

* capturing requirements
¢ domain specific
¢ functional, logical, technical, methodological

* gpecification of the system’s overall functionality
* design of a solution in terms of
¢ architecture
¢ specifying components
* implementing components
* verifying components and
* integrating them into systems and verifying the integration
* verification of system
* further evolution

These are complex error prone tasks!

Contracts, Marktoberdorf Summer School, August 2010 Manfred Broy TUT | 5

The role of modelling in software & systems engineering

Modelling helps for:

* expressing and documenting the requirements
* specifying the system
* describing the architecture

¢ specifying the components
¢ their composition and interaction

* modelling the components
* verifying of the components and
* integrating them into the system and verifying the system

Contracts, Marktoberdorf Summer School, August 2010 Manfred Broy TUT | 6

On models and modelling

What is a model?
¢ An abstraction!

Which representations for models?
¢ Informal: language, informal diagrams, ...
¢ Semiformal: formalized graphical or textual presentation languages
¢ Mathematical: in terms of mathematical theories
¢ Formal models: formalized syntax, semantics and logics

What do we use models for?
¢ for understanding - Gedankenmodell
¢ for communication
¢ for specification, design and documentation
¢ for analysis, validation, simulation, verification, certification
¢ for generation of implementations and tests
¢ for reuse

Modelling concepts provide methods for modelling!

Contracts, Marktoberdorf Summer School, August 2010 Manfred Broy Tum |

Informal

| architecture ...

Requireme S2 D
Engineerin
Validation - >
Formalized < .
l system re € > &
in S of = |/
S A che taXO LCHI cUIVI] :/ \
1®R2®R3®R4 l
N —{ =R
LN —(|"|[R4/IR3
\‘ﬁ s 1
AN %
— &/ Component N\
S1 & implementation
— S4| S3 verification
Architecture design % R1 = S1
7]
Architecture verification I o 2 N
S & S1QS2®S3®S4 RERS] .. _ .
/ - Y
Contracts, Marktoberdorf Summer School, August 2010 Manfred Broy TUM |

Towards a uniform model: Basic system model

System class: distributed, reactive systems

component

hame
component }\

C l kc cr
LM IC| Control| (7c)
! !

Nname

\ 4

A 4

A
A

System consists of

* named components (with local state)
* named channels

driven by a global, discrete clock

Contracts, Marktoberdorf Summer School, August 2010 Manfred Broy TUT | 9

Basic system model

Timed Streams: Semantic Model for Black-Box-Behavior

€q
E

~——JE Q

/, \\
Message set: d MR

7/ \ . . .
M={abc ..} 7 N |n_f|n|te channel
A T R Y. t+3_\ history

Va

Messages
transmitted at time t

Contracts, Marktoberdorf Summer School, August 2010 Manfred Broy Tum |

10

The Basic Behaviour Model: Timed Streams and Channels

C set of channels

Type: C— TYPE type assgnment

X:C — (N0} > Mu{-}) channd history for messages of type M

C or IH[C] set of channel histories for channels in C

Contracts, Marktoberdorf Summer School, August 2010 Manfred Broy Tum |

11

System interface model

Channd: Identifier of Type stream

|={X1, X2, ...} setoftypedinputchannels
O ={vyi, VY2, ..} setoftyped output channels

Syntactc interface: (1 » O)
_ X1: 957 vi: Ty
Interface behavor — | F _ -
F:I1 > go(O) LS _ Ym'lm

Set of interface behaviours with input channels |
and output channels O:
IF[l » O]

Set of dl interface behaviours:. IF

Contracts, Marktoberdorf Summer School, August 2010 Manfred Broy T|_|T| | 12

System interface behaviour - causality

(I » O) syntactc interface with set of input channels | and
of outpu channels O

F:l > go((l)) semantic interface for (I » O) with timing property
addresang strong causalty

let X, z i,ye ('),teIN:

Component interface

Contracts, Marktoberdorf Summer School, August 2010 Manfred Broy T|_|T| | 13

Examt interface specification

A transmission component TMCX:T

y: T

{m}#x denotes the sofmin

stream X

Contracts, Marktoberdorf Summer School, August 2010 Manfred Broy T|_|T| | 14

Verification: Proving properties about specified components

From the interface assertions we can prove
* Safety properties

{m}#y >0 Ay e TMC(X) = {m}#x >0
* Liveness properties

{M}#X>0Ay e TMC(X) = {m}#y >0

Contracts, Marktoberdorf Summer School, August 2010 Manfred Broy Tum |

15

System model: conclusion

A system
* has a scope (a boundary)

* a behaviour

¢ black box view: interface

e syntactic interface: defines the discrete events at the system boundary by
input and output via ports, channels, messages (events, signals)

e dynamic interface, interface behaviour: the processes of interaction in terms
of discrete events at the system boundary

S O

Contracts, Marktoberdorf Summer School, August 2010 Manfred Broy T|_|T| | 16

Systems as State Machines

Technische Universitat Miinchen S Il
Institut fur Informatik zg ; E |
D-85748 Garching, Germany R

System and States

* Systems have states
* A state is an element of a state space

* We characterize state spaces by
¢ a set of state attributes together with their types

* The behaviour of a system with states can be described
by its state transitions

Contracts, Marktoberdorf Summer School, August 2010 Manfred Broy Tum |

Example: Memory Cell as State Machine with Input/Output

Graphically (interpreted): state attribute s : Int | {null}

write(n) / ackwrite {s := n} read / out(s)

>

delete / ackdel {s :=null}

Contracts, Marktoberdorf Summer School, August 2010 Manfred Broy T|_|T| | 19

Representation of the State Machine as a Table

State s Input State s Output
null write(n) n ackwrite
n read n out(n)

N delete null ackdel

Contracts, Marktoberdorf Summer School, August 2010 Manfred Broy T|_|T| | 20

Representation as a Mathematical State Machine

State space: © = Z * {null}
Input set: E = {read, delete} = {write(z): zO Z }
Output set: A = {ackwrite, ackdel} = {out(z): z 0 Z}

Equations for the state transition function:
R:OxDIOXxJ

®(null, write(z)) = (z, ackwrite)
®(z, read) = (z, out(z2))
®(z, delete) = (null, ackdel)

Contracts, Marktoberdorf Summer School, August 2010 Manfred Broy Tum |

21

State Machines in general

A state machine (®, ¢) consists of
* a set © of states - the state space
* aset«[1© ofinitial states
* a state transition function or relation ®
¢ in case of a state machine with input/output:

events (inputs E) trigger the transitions and events (outputs A)
are produced by them respectively:

XR:OxD[1Ox3
in the case of nondeterministic machines:

X:OxDL (O xJ)

* Given a syntactic interface with sets I and O of input and output
channels:

E=1I0 MJ-}
A =00 MW-}

Contracts, Marktoberdorf Summer School, August 2010 Manfred Broy Tum |

22

Computations of a State Machine with Input/Output

A state machine (®, «) defines for each initial state
(f 0«

and each sequence of inputs

ey, €, €3 ... JE
a sequence of states

(1, (5, (3 ..0©
and a sequence of outputs

dy, dy, Az, ... A
through

((ir1 @) D[} €141)

Contracts, Marktoberdorf Summer School, August 2010 Manfred Broy Tum |

Computations of a State Machine with Input/Output

In this manner we obtain computations of the form

/b /b /b
Gy — 250, —22 55, —3 8 50,

For each initial state (0 (1 = we define a function
FGO 1— SO(O)
with
Fro0)={y:3 (2 (0= (gAY i IN: ([ih1, Xi1) = ([} Vier)}
F o : interface behavior of transition function A for initial state (0.
We define
Abs((®, &)) = F,
where:
F.X)={yOF(X):yOF(X) A [0}
F, is called the interface behavior of the state machine (®, «) .

Contracts, Marktoberdorf Summer School, August 2010 Manfred Broy T|_|T| | 24

Moore Machines

* A Mealy machine (®,) with
X:OxD p(O©xJ)

is called Moore machine if for all states (71 © and inputs e [E the
set

out((,e)={aA: ([,a)=a((,e)}

does not depend on the input e but only on state |-

* Formally: then for all e, ' [1 E we have
out([,) = out([, e

Theorem:
If (®, ¢) is a Mealy machine then F_ is causal.
If (®,) is @ Moore machine then F is strongly causal.

Contracts, Marktoberdorf Summer School, August 2010 Manfred Broy Tum |

25

Interface Abstraction

* For a given state machine with input and output we define the
interface through

¢ its syntactical interface (signature)
¢ its interface behavior

* We call the transition of the state machine to its interface the
interface abstraction.

Verification/derivation of interface assertions for state machines
* similar to program verification (find an invariant)
* needs sophisticated techniques

Contracts, Marktoberdorf Summer School, August 2010 Manfred Broy Tm |

26

Conclusion Systems as State Machines

* Each state machines defines an interface behaviour
* Each interface behaviour represents a state machine

* State machines can be described
¢ mathematically by their state transition function
¢ graphically by state machine diagrams
¢ structured by state transition tables
¢ by programs

e State machines define a kind of operational semantics
e Systems given by state machines can be simulated

* From state machines we can generate code
¢ state machines can represent implementations

* From state machines we can generate test cases

Contracts, Marktoberdorf Summer School, August 2010 Manfred Broy T|_|T| | 27

System model: conclusion

A system
* has a scope (a boundary)

* a behaviour

¢ black box view: interface

e syntactic interface: defines the discrete events at the system boundary by
input and output via ports, channels, messages (events, signals)

e dynamic interface, interface behaviour: the processes of interaction in terms
of discrete events at the system boundary

¢ glass/white box view: an internal structure (state and/or distribution into
sub-systems)

e state space

and a behaviour
o state transition relation with input and output

o
o

Contracts, Marktoberdorf Summer School, August 2010 Manfred Broy T|_|T| | 28

