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Topics

• Discrete Systems

• Discrete System modelling theory
◊ Discrete System

• Interface

• Logical specification

◊ Architectures
• Composition

• Compositional reasoning

• Contracts
◊ Assumption/Promise

◊ Logical interpretation

◊ Safety and Liveness

• Architectures
◊ Design by assumption/promise

• Generalizations
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Motivation & Foundations
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What is a (discrete) system?

A system

• has a scope (a boundary)

• a behaviour
◊ black box view: interface

• syntactic interface: defines the discrete events at the system boundary by 
input and output via ports, channels, messages (events, signals)

• dynamic interface, interface behaviour: the processes of interaction in terms 
of discrete events at the system boundary

◊ glass/white box view: an internal structure (state and/or distribution into 
sub-systems)

• architecture in terms of sets of sub-systems and their relationships 
(communication connections)

• state space

and a behaviour
• state transition relation with input and output

• interactions between components 

• properties
◊ quality profile (performance, ... )

◊ ...
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The role of modelling in software & systems engineering (S&SE) 

Software & systems engineering means

• capturing requirements

◊ domain specific

◊ functional, logical, technical, methodological 

• specification of the system’s overall functionality

• design of a solution in terms of 

◊ architecture

◊ specifying components

• implementing components

• verifying components and 

• integrating them into systems and verifying the integration 

• verification of system

• further evolution

These are complex error prone tasks!
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The role of modelling in software & systems engineering

Modelling helps for:

• expressing and documenting the requirements

• specifying the system

• describing the architecture

◊ specifying the components

◊ their composition and interaction

• modelling the components

• verifying of the components and 

• integrating them into the system and verifying the system
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On models and modelling

What is a model?
◊ An abstraction!

Which representations for models?
◊ Informal: language, informal diagrams, ...

◊ Semiformal: formalized graphical or textual presentation languages

◊ Mathematical: in terms of mathematical theories

◊ Formal models: formalized syntax, semantics and logics

What do we use models for?
◊ for understanding - Gedankenmodell

◊ for communication

◊ for specification, design and documentation

◊ for analysis, validation, simulation, verification, certification

◊ for generation of implementations and tests

◊ for reuse

Modelling concepts provide methods for modelling!
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R
System delivery

System verification

R S

Specification, verification, architecture ...
Informal 

requirements

S

Formalized 
system requirements 

in terms of 
service taxonomies

Requirements 
Engineering

Validation

S1
S2

S4 S3

Architecture design

Architecture verification
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R2
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Component 
implementation

verification
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System class: distributed, reactive systems

Towards a uniform model: Basic system model

lc

clLM Control RM

cr

rc

kc
component

channel

System consists of

• named components (with local state)

• named channels

driven by a global, discrete clock

channel 
name

component 
name
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Basic system model

E

eq

qe
Q

t t+1 t+2 t+3

a -

Timed Streams: Semantic Model for Black-Box-Behavior

Messages 
transmitted at time t

infinite channel 
history

Message set:

M = {a, b, c, ...}
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The Basic Behaviour Model: Timed Streams and Channels



Manfred Broy 12Contracts, Marktoberdorf Summer School, August 2010

System interface model

 

x1: S1 
xn: Sn 

y1: T1 

ym: Tm 

F 
  

Channel: Identifier of Type stream 
 
 I = { x1 , x2 , ... }   set of typed input channels 
O = { y1 , y2 , ... }   set of typed output channels 
 

Syntactic interface:             (I  O) 
 

Interface behavior 
 
 
Set of interface behaviours with input channels I 
and output channels O:  

IF[I  O] 
 

Set of all interface behaviours: IF 

F : I  (  
r 
O ) 
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I O

Component interface

System interface behaviour - causality

 (I  O)            syntactic interface with set of input channels I and 
of output channels O 

 

 F : I  (  
r 
O )  semantic interface for (I  O) with timing property 

addressing strong causality 
 

  let x, z    
r 
I , y    

r 
O , t  IN:  

x t = z t  {y t+1: y  F(x)} = {y t+1: y  F(z)} 

A system shows a total behavior
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Example: Component interface specification

TMC

x ~ y 

x:T y:T

Input channel

Output channel

Specifying assertion

Spec name
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Verification: Proving properties about specified components

From the interface assertions we can prove

• Safety properties

{m}#y > 0 y TMC(x) {m}#x > 0

• Liveness properties

{m}#x > 0 y TMC(x) {m}#y > 0
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System model: conclusion

A system

• has a scope (a boundary)

• a behaviour
◊ black box view: interface

• syntactic interface: defines the discrete events at the system boundary by 
input and output via ports, channels, messages (events, signals)

• dynamic interface, interface behaviour: the processes of interaction in terms 
of discrete events at the system boundary

◊ glass/white box view: an internal structure (state and/or distribution into 
sub-systems)

• architecture in terms of sets of sub-systems and their relationships 
(communication connections)

• state space

and a behaviour 
• state transition relation with input and output

• interactions between components 

• properties
◊ quality profile (performance, ... )

◊ ...
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Systems as State Machines
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System and States

• Systems have states

• A state is an element of a state space

• We characterize state spaces by 

◊ a set of state attributes together with their types

• The behaviour of a system with states can be described 
by its state transitions
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Example: Memory Cell as State Machine with Input/Output

Graphically (interpreted): state attribute s : Int | {null}

empty

s = null

full

s ≠ null

write(n) / ackwrite {s := n} read / out(s)

delete / ackdel {s := null} 
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Representation of the State Machine as a Table
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Representation as a Mathematical State Machine

State space: = Z {null}

Input set: E = {read, delete} {write(z): z Z }

Output set: A = {ackwrite, ackdel} {out(z): z Z}

Equations for the state transition function:

: 

(null, write(z)) = (z, ackwrite)

(z, read) = (z, out(z))

(z, delete) = (null, ackdel)
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State Machines in general

A state machine consists of

• a set of states - the state space

• a set of initial states

• a state transition function or relation 

◊ in case of a state machine with input/output: 

events (inputs E) trigger the transitions and events (outputs A) 
are produced by them respectively:

in the case of nondeterministic machines:

• Given a syntactic interface with sets I and O of input and output 
channels:

E = I M {-}

A = O M {-}



Manfred Broy 23Contracts, Marktoberdorf Summer School, August 2010

Computations of a State Machine with Input/Output

A state machine ( , ) defines for each initial state

0

and each sequence of inputs

e1, e2, e3, ... E

a sequence of states

1, 2, 3, ... 

and a sequence of outputs

a1, a2, a3, ... A

through

( i+1, ai+1) ( i, ei+1)
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Computations of a State Machine with Input/Output

In this manner we obtain computations of the form

For each initial state 0 we define a function

with

F 0(x) = {y: i: 0 = 0 i IN: ( i+1, xi+1) = ( i, yi+1)}

F 0 : interface behavior of transition function for initial state 0.

We define 

Abs(( , )) = F

where:

F (x) = {y F (x) : y F (x) }

F is called the interface behavior of the state machine ( , ) .

  0
a1 / b1

1
a2 / b2

2
a3 / b3

3 ...

  F 0 :
r 
I (

r 
O )
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Moore Machines

• A Mealy machine with 

is called Moore machine if for all states and inputs e E the 
set

out( , e) = {a A: ( , a) = ( , e) }

does not depend on the input e but only on state .

• Formally: then for all e, e’ E we have

out( , e) = out( , e’)

Theorem: 

If is a Mealy machine then F is causal. 

If is a Moore machine then F is strongly causal.
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Interface Abstraction

• For a given state machine with input and output we define the 
interface through

◊ its syntactical interface (signature)

◊ its interface behavior

• We call the transition of the state machine to its interface the 
interface abstraction.

Verification/derivation of interface assertions for state machines

• similar to program verification (find an invariant)

• needs sophisticated techniques
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Conclusion Systems as State Machines

• Each state machines defines an interface behaviour

• Each interface behaviour represents a state machine

• State machines can be described

◊ mathematically by their state transition function

◊ graphically by state machine diagrams

◊ structured by state transition tables

◊ by programs

• State machines define a kind of operational semantics

• Systems given by state machines can be simulated

• From state machines we can generate code

◊ state machines can represent implementations

• From state machines we can generate test cases
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System model: conclusion

A system

• has a scope (a boundary)

• a behaviour
◊ black box view: interface

• syntactic interface: defines the discrete events at the system boundary by 
input and output via ports, channels, messages (events, signals)

• dynamic interface, interface behaviour: the processes of interaction in terms 
of discrete events at the system boundary

◊ glass/white box view: an internal structure (state and/or distribution into 
sub-systems)

• architecture in terms of sets of sub-systems and their relationships 
(communication connections)

• state space

and a behaviour
• state transition relation with input and output

• interactions between components 

• properties
◊ quality profile (performance, ... )

◊ ...


